
R U N G E - L E N Z V E C T O R I N T H E P R E S E N C E O F E L E C T R I C F I E L D B1353 

quantum mechanically, provided care is taken with the 
order of the operators. The only change necessary is 
that C must be symmetrized so that 

1 1 
C=H- (LXp-pXL) (rXE)Xr. 

2Z$m 2Ze 

I. INTRODUCTION 

IN a previous paper1 the structure of the eigenfunc-
tions for a Dirac electron in a pure Coulomb field has 

been discussed by means of a new representation that 
diagonalizes the operator I\ The operator V is the 
analog, for the Dirac-Coulomb problem, of the angular 
momentum operator pzK in the free Dirac electron prob
lem. In the new representation the Dirac-Coulomb prob
lem becomes formally similar in structure to the plane-
wave problem; the nonintegral "angular momentum" 
p 3 r -^ 7 =| [ (y+i )2- ( a Z)2] i /2 | is n o t Sharp and y 
mixes with 7—1 analogous to the mixing of angular 
momenta / and l—\ in the plane-wave problem. In 
both problems there exists a scalar invariant—the 
Lippmann-Johnson2 operator, which, in a spherical 
representation, plays the role of the denning radial 
differential operator for the radial functions. 

It was noted in the discussion of the Lippmann-
Johnson operator in I Sec. IV that the results presented 
there led in a natural way to consideration of a third 
problem intermediate in complexity between the Dirac-
Coulomb problem and the plane-wave problem. It is 
the purpose of the present paper to discuss this inter-

* Work was supported in part by the U. S. Army Research 
Office (Durham) and by the National Science Foundation. 

f On leave of absence from the Karnatak University, Dharwar, 
India. Present address: Department of Physics, Oklahoma State 
University, Stillwater, Oklahoma. 

1 L . C. Biedenharn, Phys. Rev. 126, 845 (1962). We shall, 
hereafter, refer to this as I. References to the very extensive 
literature on this problem are contained in paper I. 

2 M. H. Johnson and B. A. Lippmann, Phys. Rev. 78, 329 
(1950). 
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mediate problem, the "symmetric Coulomb-field prob
lem" as we propose to call it. 

A basic motivation behind the present work derives 
from various physical problems involving the inter
action of relativistic electrons and radiation in the 
presence of (nuclear) Coulomb fields (for example, 
bremsstrahlung, internal conversion, nuclear excitation). 
Invariably one is led to technically intractable results 
involving complicated radial integrals suitable only for 
numerical treatment (or by approximations lacking a 
critical error assessment). This situation is to be con
trasted to similar calculations carried out within a non-
relativistic framework: the famous Sommerfeld inte
gration in closed form of the dipole bremsstrahlung 
energy loss is a striking example. The naive question 
therefore suggests itself—why should the introduction 
of relativistic effects, even when small, lead to such an 
inordinate increase in complication? 

An immediate answer—but one which requires rather 
much amplification—is this: The nonrelativistic Cou
lomb field possesses the symmetry3 of the four-dimen
sional rotation group R±. It is well known that relativity 
spoils this symmetry.4 The loss of symmetry thus occurs 
at the classical level and is not primarily a property of 
the spin.5 

3 V. Fock, Z. Physik 98, 145 (1935); V. Bargmann, ibid. 99, 576 
(1936); W. Pauli, ibid. 36, 336 (1926). 

4 There remains, however, the degeneracy of states having op
posite signs for the Dirac operator K characterized by the 
Lippmann-Johnson operator (see Ref. 2). 

5 That is to say, a spinless charged-particle problem would show 
a similar loss of symmetry when subjected to relativistic effects. 
[Relativistic spin-orbit effects are, however, not trivial. Indeed the 
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In the classical problem it is quite possible to re
introduce the degeneracy (closed orbits) by considering 
an appropriately rotating coordinate system. The trans
formation, called S in paper I, which diagonalized T, 
was shown to be in a qualitative sense the analog, in the 
classical limit, of the classical rotating coordinate 
system. One is thus led purely formally to investigate 
the meaning of closed orbits (orbits of nonrelativistic 
form) in the frame of reference defined by the trans
formation S. In this way one is led to define a new type 
of Coulomb problem—the symmetric Coulomb problem 
—which has the Hamiltonian H given in Sec. I I I . As we 
shall prove later, the symmetry group of this Hamil
tonian is characterized by the two vector invariants J 
and K which are the analogs of L and A of the spinless 
nonrelativistic problem.6 

As will be demonstrated in Sec. I l l the symmetric 
Hamiltonian, Hsym, is an approximation to the Dirac-
Coulomb Hamiltonian, in which the approximation 
consists in "turning off" the fine structure. (It seems 
remarkable that this "turning off" has such a simple 
form.) One already knows the existence of several 
approximations to the Dirac-Coulomb wave func
tions—these are the Sommerfeld-Maue-Meixner-Furry 
(S-M-M-F) functions.7 I t is probably no surprise that 
the solutions of the symmetric Hamiltonian are closely 
related to the S-M-M-F functions, since both are (aZ)2 

approximations to the exact Dirac-Coulomb functions. 
This relationship will be discussed in Sec. I I I . 

The fact that a Hamiltonian basis (in Dirac four-
component form) exists for the solutions to Haym—in 
contrast to the S-M-M-F functions—is of considerable 
value. Not only are these functions now seen to be 
complete and orthonormal and possessing bound states, 
but a systematic expansion of these, directly in the fine 
structure splitting (aZ)2//c, is now possible. 

The usefulness of H8ym is further enhanced by the fact 
that the integration of the symmetric Coulomb problem 
is completely expressed in terms of the operators J and 
K, precisely as in the nonrelativistic case. In conse
quence matrix elements over these basis functions are 
purely geometric in character. This is especially clear for 
the bound states. 

In Sec. I I we shall, as a preliminary, discuss the case 
of the nonrelativistic spin-§ particle in a Coulomb field, 
and introduce the symmetric Hamiltonian in Sec. I I I . 
Sections IV and V will be devoted to the investigation of 
the eigenfunctions and eigenvalues of this Hamiltonian. 
In the concluding section, Sec. VI, we shall present ex
plicit invariant operators of this Hamiltonian and ex
amine its group structure. We hope to discuss in a 
future paper questions related to the separation of the 

adjunction of a Pauli spin in the nonrelativistic problem is a great 
convenience in solving the nonrelativistic Coulomb problem 
(see Sec. II) . ] 

6 L. C. Biedenharn, J. Math. Phys. 2, 433 (1961). 
7 A. Sommerfeld and A. W. Maue, Ann. Physik 22, 629 (1935); 

W. Furry, Phys. Rev. 36, 391 (1934); J. Meixner, Z. Physik 90, 312 
(1934). 

differential equation in parabolic coordinates, the mo
mentum-space wave functions, the Hartree-Fock wave 
functions, and other applications. 

II. NONRELATIVISTIC SPIN-f PARTICLE 
IN A COULOMB FIELD 

I t is an interesting fact that it is considerably easier to 
discuss the motion in a Coulomb field of a Pauli particle 
(nonrelativistic spin-J particle with dynamically inde
pendent spin) than the motion of a spinless particle.8 I t 
is particularly important that we avail ourselves of this 
simplicity since the detailed considerations of Sec. IV 
are based directly upon introducing such wave functions 
for the "big" and "little" spinors in p space. The spin-
angular part of the wave functions are easily handled by 
the methods of Wigner algebra. The coupled spin-angle 
functions are defined by1 

V=i K ± ( ) X±^EC( l (±4 h \K\ -h M=Fr, ±r, n) 
T 

X F ^ j ^ ' ^ x ^ (1) 

and these satisfy the equations: 

( C F . L + 1 ) 0 / = - # / , (2) 
< F - r 0 / = ^ ( - K ) ^ _ / , (3) 

where f is the unit vector x/r, S(K) denotes the sign of K, 
and 

J V / = i ( i + i ) « A (4) 

/ , 0 / = M 0 / , (5) 

( 0 K ^ > / ) = 5 K ^ V , (6) 

r ^ M = = ( _ ) ^ 0 - , j (7) 

where T is the time reversal operator. 
In Eq. (6) the scalar product involves summation 

over spin coordinates in addition to integration over the 
angles. For each K there are 21 K \ eigenfunctions having 
the projection quantum numbers ju= —j, — / + 1 , \-j 
because |K| = . /+§. T in Eq. (7) stands for the time 
reversal operator i<ryKo with KQ being complex conjuga
tion. The choice of (—)j+li rather than (—)*-* is 

motivated by the fact thatf or Xi/2~~1/2=( 1 ) and 

Xi/21/2=(n) the <£/ obey this choice using i<ry 

- ( - ! ! ) • 
Consider next the NR problem which has the 

Hamiltonian 
1 Za 

#NR= V2 , (8) 
2m r 

8 We shall refer to this problem hereafter as the NRS problem 
for brevity and indicate by NR the nonrelativistic problem with
out spin. 
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with eigenvalue 

|6NR | = |EN E | /m=|(aZ/iV)2 . (9) 

As has been shown by Pauli3—and others—this 
Hamiltonian has two vector invariants L and A, which 
is denned (with suitable normalization) as: 

A=l-2mHNn]-1/2{aZfm+^(Lxp-pxL)}, (10) 

A L = L A = 0 , (11) 

AxA=;L; L X L = ; L , (12) 

AxL+LxA=2*A. (13) 

These relations are the generator relations for the R* 
group. 

The spin vector o- commutes with the Runge-Lenz 
vector A. The scalar product or* A defines the "Coulomb 
Helicity Operator" for the NRS system as follows: 

cT.A' = [7V2-(a.L+l)2]-1/2C-2w^Nii]-1/2 

X{wraZni—i(o-L+l)o-p} 
= [AT2~(<F-L+l)2]-1/2(r.A. (14) 

This pseudoscalar operator anticommutes with cr*L+l 
as can be verified directly. By means of this anti-
commutation property one can formally factorize the 
operator N2 of the NR problem. That is 

# 2 = (aZ)2w2[-2wfi r
N R]-1=^2+i:2+l (15) 

-(a-A+cF-L+1)2 . (16) 

A new linear operator can, therefore, be defined by 

N=aZml-2mHNn]-m= (a-A+<r-L+l). (17) 

Like the Weyl equation, to which it is formally similar, 
this eigenvalue system fif-^N is not acceptable as a 
factorization of the NR Hamiltonian. 

The eigenfunctions of the NR Hamiltonian are well 
known to be (apart from a normalization constant) 

(rd<l>\Nlm)=FNl(r)ilYl
m(d}<p), (18) 

where the radial function is given in terms of the con
fluent hypergeometric function 

FNl(r) = C*-1/*<"*Br) (2 W ) 1 

X i F i ( - ( ^ - / - l ) , a + l ; 2 * N B f ) , (19) 
&NR=(aZ/A0m, 

and is normalized as 

/ Fm
2r2dr=l. 

Jo 

It follows that the eigenfunctions for the NRS system 
are of the form 

{r64»jz\NKix)=FNl(r)<l>f. (20) 

The operator or* A when expressed in this representation, 
as was done in Eq. (14), has the property of reversing 

the sign of K : 

Or.A/|i\rrJ^> = fS(jc)|iVr-JCM>, (21) 

a result which can be easily established by means of 
the two operator relations 

((r.A+<F-L+l)2=^2+L2+l=iV r2, (16) 

[ > A , c r . L + l ] + = 0 , (22) 

and also the fact that A and <r commute with iV2. 
From the formal point of view the NRS system has 

the abstract group structure SU2XSU2XSU2. In order 
to see this let us note that the NRS system has, as 
generators, the three commuting "angular-momentum 
operators" 

j i=4(L+A), (23) 

j 2 = J ( L - A ) , (24) 

JS=*€F, (25) 
with 

h*h=ih- (26) 

To complete the synopsis of the NRS system, let us 
obtain explicit operators which raise and lower the 
value of K. 

Let us first notice that the vector operator cxL, 
which acts on the spin-angle functions # / , is perpen
dicular to the angular momentum vector J. It therefore 
cannot connect states of the same \K\. Since L2commutes 
with L we see readily that or x L commutes with L2; thus 
it leaves Z(Z+1) = K ( H - 1 ) invariant. Since <rxL cannot 
change the "Z" value of the spinors # / , it must therefore 
connect either K or (—K— 1). The first possibility is 
already removed by the perpendicularity, hence 
crxL=»fc, —K—1. Since we already know that the 
Coulomb helicity operator reverses the sign /c, we can 
then readily verify the following explicit relations; 

«r«A'(orxL)fl|Aty> 
=iS(-K-l)C(j(K)) 1, iOc+l);/i, £, ii+q) 

[/c(2K+l)]i/2|AT/c+lM+5), (27) 
(crxL^A' l iVV) 

=iS(ic)C(j(K), 1, i(/c-1); p, q, n+q) 
X[K(2K-1)] 1 / 2 |AT JC-1 11+q). (28) 

III. THE INTRODUCTION OF THE 
SYMMETRIC HAMILTONIAN 

The symmetric Hamiltonian, to be introduced in this 
section, constitutes a Dirac Hamiltonian which approxi
mates, with an error of the order of (aZ)2//c, the exact 
Dirac Hamiltonian with the Coulomb potential. It is 
logically correct simply to define the symmetric Hamil
tonian—out of thin air as it were—and demonstrate 
that the assertions to be made are correct. Such a 
procedure, even though valid, is not very satisfying if 
physical insight is desired and we will accordingly 
attempt to present the actual motivation that led to the 
introduction of this symmetric Hamiltonian. Our point 
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of view will be qualitative and interpretive, for we 
recognize that a really precise treatment would be 
excessively involved. Every critical result will be proved 
directly in succeeding sections. 

In order to do this, we need first to summarize 
some of the main viewpoints and results of paper I. 
In that paper we demonstrated that there existed a 
new frame of reference {defined by the transformation 
5=exp[—ip2wr tanh -1 (aZ/iT)]} in which the new 
"big" and "little" spinors assumed precisely the form of 
the (two-component) wave functions, in a spherical 
representation, of the NRS system, with the single dis
tinction that the integer angular momentum I (of the 
Pauli particle) now became the noninteger angular 
momentum y= \[_K2— (aZ)2]1/2|. The definition of the 
transformation consisted, in fact, of requiring that this 
occur. Let us next recall that Sommerfeld obtained his 
famous energy levels of the hydrogen atom by trans
forming to a rotating coordinate system in which the 
relativistic precession (the familiar "rosette" motion) 
was eliminated and closed orbits occur. The transforma
tion S was shown to be a Lorentz transformation in some 
sense analogous to the Sommerfeld's transformation.9*10 

The coordinate system defined by S is thus that 
frame of reference in which the relativistic Kepler 
motion appears most closely similar to the non-
relativistic Kepler motion. It is a very natural step then 
to ask: What are the consequences of assuming that in 
this special frame the motion is precisely nonrelativistic? 
The symmetric Hamiltonian is found to emerge as an 
answer. 

In order to obtain this Hamiltonian it suffices to recall 
that there exists, for the relativistic Kepler problem, a 
scalar constant of the motion—the Lippmann-Johnson 
invariant—which (in the coordinate frame S) con
stitutes the defining differential operator for the radial 
Coulomb functions, and thus defines radial functions 
for all limiting cases (NR case and plane-wave case). To 
define the symmetric Hamiltonian, therefore, one would 
need only to use the (Lippmann-Johnson) operator in 
nonrelativistic form—that is, / (7) —> I (K) or 171 —»| K \. 
The desired Hamiltonian then results from Eq. (24a) of 
I with |Y|—>|K| a n d w - ^ - w . 1 1 

This leads to the Hamiltonian 

i?= S i W p - {exp[- p2tf • r sinh-1 (ceZ/K)]} 

X(pi(r«p-p3Wo). (29) 

The Hamiltonian is not Hermitian and is, of course, 
9 A. Sommerfeld, Atomic Structure and Spectral Lines (E. P. 

Dutton & Company Inc., New York, 1931), p. 254. 
10 A transformation to a rotating coordinate frame does not 

belong to special relativity and the statement made here is not to 
imply a genuine equivalence but only to mean that the Lorentz 
transformation 5 appears to transform to a coordinate system 
agreeing instantaneously with the rotating system. The total 
angular momentum in fact commutes with S; see, for instance, 
I Sec. B. 

11 This latter step is required since Eq. (24a) of I is the Dirac-
Coulomb operator in the frame S having negative mass, i.e., 
SOS'1 of paper I. 

not required to be. In order to obtain a Hermitean 
Hamiltonian we transform S by the operator Si and 
obtain 

Hsy^Sl-^St^SlHpSl (30) 

= #I>irae+i3rf3j (31) 

where12 the fine structure interaction 

Hn^p^f/r)K{{l+{aZ/Kyj^\). (32) 

The first point to note is that the transformation Si 
is not the same as the one which takes the Dirac equation 
into its "most nonrelativistic" form. The two trans
formations differ by terms Q(aZ)z. The fact that the 
two frames S and Si differ in 6(aZ)z has a consequence 
that any straightforward approximation of the Dirac-
Coulomb functions, as an expansion inaZ (the Sommer-
feld-Maue definition, for example) inevitably confuses two 
different effects: the effect of nonrational l(y) and the 
effect of the different coordinate frames. The result 
would be literally impossible to untangle. 

As was pointed out in the introduction, the S-M-M-F 
wave functions were first obtained as approximations to 
the exact Dirac-Coulomb functions. Later Sommerfeld13 

presented a systematic view which is briefly as follows: 
The iterated Dirac-Coulomb Hamiltonian contains 
three terms in aZ—aZ/r, aZpi(wf/r2), (aZ/r)2—of 
which the first (Coulomb) term is considered to belong 
to the zeroth-order operator, D. Sommerfeld and Maue 
expressed the solution ^r to the iterated equation as a 
power series in aZ 

*=<l>o+ (aZ)$i+ (aZ)2$2+ 

and the projected component DJ& (in their notation) 
was the solution to the linear (Dirac) equation. Apart 
from the fact that even the first approximation $1 
contains a factor which has to be determined differently 
for different applications, the projected component 
DJfr, accurate only up to 6(aZ), is not of particular 
simplicity. The function #o+aZ$i is usually referred 
to as the "Sommerfeld-Maue function." For such a 
function, defined as part of a series expansion, the 
question of a Hamiltonian basis is not relevant. This is 
in sharp contrast to the solutions of Hsym, which clearly 
are also solutions of the iterated equation. In point of 
fact #o+«Z#i fails [in order {aZ)2~] to satisfy the 
iterated Dirac-Coulomb equation, either in the zeroth 
order (D of Sommerfeld) or even when the "spin-
correction term" aZpi(v"r/r2) is included. The origin 
of this behavior may be traced to the fact that the spin-
dependent perturbation in the S-M method really 
belongs to the zeroth-order system in the appropriate 
frame of reference, as does a part of the (aZ/r)2 term. 
The essential "perturbation" in the Dirac-Coulomb 
Hamiltonian is the "fine structure interaction" as shown 

12 L. C. Biedenharn, Bull. Am. Phys. Soc. 7, 314 (1962). 
13 A. Sommerfeld, Atombau und Spektrallinien (F. Vieweg & 

Sohn, Braunschweig, I960), p. 408. 
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above. This distinguishes our approach from that of 
Sommerfeld-Maue. 

It should be noted that the fine structure interaction 
is of order (aZ)2/|K|, which indicates that the S-M 
series in powers of aZ is unduly restrictive, as noted 
first by Bethe and Maximon.14 It is clear that the 
spherical solutions of Haym differ from the exact 
spherical Dirac-Coulomb functions in the same order15 

(oZ)VI*|. 

IV. SOLUTIONS OF H AND NORMALIZATION 

Out of the spherical spinors of Eq. (1) one can easily 
build the simultaneous eigenvectors of the commuting 
operators K and p2<r • f; 

n W(-«)( ) 

(33) 

(34) 

In order to solve the eigenvalue equation 

3vNKIi=ENVNKfl, (35) 

let us rewrite the above equation as 

pp 2 a-p+Wo+£Sr 2
P 3>=0. (36) 

If we now iterate this equation by multiplying on the 
left with (—p2cr«p+w0—ESr2pz), we get a second-
order equation which, when we use the relation 

pP2<r • p, S f 2p3]+= 2aZ/r, (37) 
reduces to 

[V2+ (E 2 - fno2)+2aZE/rJf>=0; (38) 

a solution of which is easily written down 

$ - ( ° )• 
\\NKU)/ 

(39) 

Here we have put k2=nto2—E2 in the radial function. 
Now by a procedure exactly similar to that 
adopted in paper I Sec. Ill , one arrives at the solution 
(unnormalized) 

*N-

k\l(N2/K2)-l2ll2\\N-Kfx) \ 
u— 1 

\-(ENn + (aZ/K (.Ewll+(aZ/K)*yi*+m)\NKiiy ' 
(40) 

We notice that the factors multiplying the spinors 
\NKJJ) and \N—Kfi) are not constants, as in the non-

14 H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1953). 
15 In discussing the inaccuracy in the S-M-M-F functions Bethe 

and Maximon initially asserted that the error was of the order of 
(aZ/l)2. A note added in proof (p. 773) corrects this to (aZ)2/l— 
although one may be misled by the fact that the abstract and 
introductory discussion of their paper have not been corrected 
accordingly. 

relativistic case, but are functions dependent on N and 
K obeying the condition that their ratio is fixed. It is this 
dynamical coupling of the relativistic particle to the 
Coulomb field that makes the representation space of 
the eigenfunctions ^NKH not a mere doubling of the 
space of \NKP). Since J2, Jz and K commute with 
ff, these solutions have sharp j= | K | — § and n=jz and /c. 
Their parity is ( - ) Z ( K ) . 

The transformation Si introduces some new features. 
It is not a unitary operator and, as we have noted earlier, 
S is not Hermitean although Haym is. In fact we have 

Si 1=P351
+P3F£«5l+ . (41) 

In order to make the charge of the particle invariant it 
is necessary to normalize the eigenfunctions such that 

(*NmS1-**NK,) = l . (42) 

This ensures the invariance of the eigenvalue Ex. 
Remembering that -ff is a transform of the Hermi
tean Hamiltonian Hsym we see readily 

H=SiHaymSr1, (43) 

*NKH=S&8; H8yn&s=ENys, (44) 

(p8ps) = ( ^ ^ f % J = 1, (45) 

(Vs,HBym$rs) = (PNKPJB&NW) = EN. (46) 

We thus have a situation similar to the Pauli adjoint 
in the Dirac theory. For expanding an arbitrary vector 
in this complete orthonormal set we use the projection 
operator 

(PNK^N J (*NKfiSr2, (47) 
and 

* = Z GV«M*- (48) 
2V*/t 

Introducing the dimensionless functions 

f(K
2) = € J V [ l + ( a Z / K ) ^ , 

the normalized eigenfunctions are 

[BV)-i:M i / f 

(49) 

(50) 

^N-K 

2(2£*-l) 

2(2**-1) 

N-Klt) 

\NKH) 

(51) 

Let us next consider the second-order differential 
equation satisfied by the solutions of H. It is easiest to 
work in the frame 5 wherein, after iterating 50_5 - 1 , 
we get 

Lr2 dr\ dr/ 

2aZE 
-(E?-m?)- r(r-i) Y 0. (52) 

file:///Nkjj
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Transforming this into the frame of the symmetric 
Hamiltonian we have 

r - > P 3 K - > * , r2->K2. (53) 

Using the relation 

K(K+1) = 1(1+1), (54) 
this gives 

[V2+ (2aZE/r )+E 2 -m 0
2 >=0. (55) 

This second-order differential operator is precisely the 
Klein-Gordon operator for the Coulomb field with the 
single exception that the term (aZ/r)2 has been discarded. 
H is thus an exact factorization of the Klein-Gordon 
equation given in Eq. (55). 

V. BOUND STATES 

The energies of the bound states, the wave functions 
for which have already been given in Eq. (51), are 
given by 

EN=m,c2/[l+ (aZ/N)22m. (56) 

In contrast to the usual Dirac equation it is here seen 
that the energy is dependent only on the "principal 
quantum number N" just as in the nonrelativistic case. 
The system is therefore again degenerate, or, as stated 
earlier, the fine structure is "turned off." From the 
usual boundary condition on the wave function we see 
that the radial part of the wave function satisfies the 
requirement that N—I— l i s O o r a positive integer. We 
have, however, 

K=l if JC= + (y+j)> or /= |* l , (57) 

= - ( / + l ) if * = - ( i + i ) , or 1+1= \K\. (58) 

If we set K= —j—\ or K= — I— 1, we see that K can take 
all possible values K=—N, —N+l, \-N. On the 
other hand, when K=J+\ or Z=K, we see that K=+N 
does not give an acceptable wave function as N>K+1. 
Thus each \K\ occurs twice, except for K=+N, and 
there are 21 K | eigenfunctions for each value of K corre
sponding to At= — (Ul— i)> •' •> + (U |— J). The total 
number of eigenfunctions belonging to a given value of 
N is therefore 

E 2{2\K\-N} = 2N2, (59) 

corresponding to the N2 eigenstates, each having the 
energy E^B,/m=^(aZ/N)2 in the nonrelativistic theory. 

While we have noted that for K=N there is no solu
tion, it is important also to note that for K= —N, SF has 
but a single component in p space. An interesting way 
of interpeting these results is provided by a relativistic 
Coulomb helicity operator A (to be presently introduced 
in the next section) which anticommutes with the Dirac 
operator K. These two operators cannot be simultane
ously sharp, unless one operator has the eigenvalue zero. 

This, in fact, occurs since for K=—N, both A and K are 
simultaneously sharp and, therefore, A—>0. Since A 
expresses the degeneracy with respect to the direction 
of rotation of an ellipse (about a perpendicular axis) 
one sees that for /c= — N the lack of degeneracy (A —> 0) 
expresses the fact that the ellipse degenerates to a 
circular orbit and the rotation of the "major" axis has, 
therefore, no meaning. 

VI. SYMMETRY AND INVARIANT OPERATORS 

We have already mentioned that the angular momen
tum J and the Dirac operator K commute with the 
symmetric Hamiltonian. A Hermitean operator which 
also commutes with this Hamiltonian is the "relativistic 
Coulomb helicity operator" defined as follows: 

A= [m o2_ H*-]-W{pzaZiT-rff-iK<r-j)}. (60) 

This can be conceived of as the nonrelativistic operator 
or-A generalized by pz doubling to the four-component 
form and m (i.e., mc2) replaced by the relativistic energy 
operator S. A obeys the commutation relations 

[ # , * ] = 0 , (61) 

[J,A]=0, (62) 

[is:,A]+=0. (63) 

The following operator relations are used in establishing 
the vanishing of the commutator [A,ff]: 

[Xp2<T.p]=0, (64) 

Pi[W, *'V}iSi,=Si-*pJ[o't, «r.p]+, (65) 

[_Pz0-t,ff}=iS^Pi[a-f,^v]+, (66) 

lv-%ff]=aZK-l
Pil<a-v,v-f]+Hp. (67) 

1 reverses the sign of K in ̂ u^ and the analog of Eq. (21) 
is obtained by straightforward computation, 

l'^N^^iS(-K)ZNt-K*y^MiTv=9ir-v. (68) 

Defining an operator f = j ? [ l + (aZ/KfJv, if we rewrite 
A as 

A= [mo2- H22-ll2{p2Km0+ipiK^} (69) 

and square both sides we get 

Zmo2-82lA2= -K2{imoZp2Ml+- (pif)2+m0
2}. (70) 

Using the following relation 

[PlJ?,p2]+= - 2ipll+ {aZ/K)2Jl2Sr*H, (71) 

Eq. (70) reduces to 

A2+K2= (aZ)232tm,2-H2J-l=N2. (72) 

One can also define an operator 

# = A + K = {(aZ)2H2lmo2-H2J-1}1/2, 
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which has the eigenfunction 

$NJ,= L(N+K)/2NJI>*N-Kti 

+ll/2N(N+K)J»MN-Kti 

/a\-Njii)\ 
(73a) 

a and b being the functions multiplying the spinors in 
Eq. (51). The eigenvalues of ft are ±iV, for alljViV—J, 
while for j=N—% only — N occurs. The $NJH are 
"helicity" eigenstates and do not have a sharp parity 
except for j=N—\. 

While the operator that reverses the sign of K is easily 
obtained from a generalization of the corresponding 
operator in the NRS system, it is unfortunate that the 
"raising" and "lowering" operators are not so simply 
obtained. The basic structure of the operator is given 
below: 

p,54(1r),( i :r)'5] fc- (Q)*-' 
= co_C(iOc), 1, i(/c-1); /*, q, ix+qy&N *-i M+S , (73) 

where co_ is a function of K2 and N. Making use of the 
operators 

aZHlmo2- ff2]"1/2=^ -» N, (74) 

£}=$-}-+D=N-l, (75) 

we build the following three parts of a vector operator 
and indicate what they do to an eigenfunction of the 
symmetric Hamiltonian 3, 

™"~- cfl'-(x+OT"<^)Q'°a>-
X{2(2f2-l)(f-l)-15-1}1/2^ (76) 

=Z>[2- dc-i)«T^C(ic—i, 1, JC—#; h 0, | ) 

xcO'W,i,i(«-i);/»,?,/»+?) 

X*y-(-i) H-fl. (77) 

(K+),= [52-(iT-|)^/2 

xf—Y—) I'w. 
\2JK:—l/Vs:—1/ 

Xl,{2(2f2-l)(f-l)-1
Jff-

1}1/2. 

(K+)^2,-«M=CZ3«-(ic+J)»]1/» 

XC(jc-i,l,jc+i;J,0,i) 

XC(y, 1, y(/c+l);/x, g, /x+g) 

(K\\)q=iDl(K^)(K+i)l-nJ)a-

(78) 

(79) 

(80) 

( K | | ) ^ - K M=D C(jc-i, 1, * - § ; J, 0, J) 

XC(i, 1, i;/x, q, fx+q)^^-K „+„. (81) 

In other words, the three parts commute with the sym
metric Hamiltonian and, therefore, the vector operator 
K=K++K~+K| | is a n invariant. In spite of the occur
rence of operators in the denominators of K it is impor
tant to note that the circumstances are such that the 
operators are always well denned, f for instance cannot 
assume the value 1, and by restriction of the values 
which K can take relative to a given N, f2 can never 
assume the value J. By construction f is positive and 
hence f + 1 cannot be singular. The operators KzL 1 do 
not operate before the commutator [or x L, JET\ and this 
ensures that they do not contribute any singularity. 
The factor l(K-i)(K+±)J12 is just [ j ( i+ l ) ] 1 / 2 . Thus, 
though very complicated in structure, K is always well 
denned. The following relations are easily established by 
direct computation: 

[KifolpN^ieijkJj&Nw, (82) 

2hK*NKfl=(ff-i)*NKfl, (83) 

{(J+K)2+l}*NKIi=R2*NKIi. (84) 

Since the ^JV^ form a complete orthonormal set, we con
clude that the operator relations are themselves valid. 
From J and K we can form the commuting pair of 
vectors 

j i = i ( J + K ) , (85) 

j .=i(J-K), 
Di,)2]=o, 

(86) 

(87) 

which guide us in the computation of the total number 
of independent vectors in the subspace of a given N 
(degree of degeneracy, in the case of bound states). 
Since J=J1+J2 we have, by the vector addition theorem, 

ji+J2%JZ\Ji-J*\-

We have the following assignment dictated by the 
admissible values of K : 

ji=N/2; j2=(N-l)/2, 
number of states=N(N+1) 

K=+ve; ji+J2=N-%; \j\-j 2 | = J ; 

jx={N/2)-U j%=(N-l)/2, 
number of states=N(N— 1). 

Thus the total number of states is 27V2, a result which 
has been established earlier from the wave functions. In 
view of Eqs. (76)-(87) we conclude that the group of 
the symmetric Hamiltonian is at least as large as the 
four dimensional rotation group R4.16 

16 The complete symmetry group is, however, larger and appears 
to be a factor group of a semidirect product of (SU2)

3. 
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It is interesting to note in passing that there exists for 
the plane-wave free-particle Dirac Hamiltonian a 
vector invariant operator which can be obtained by 
letting (aZ) —> 0 in Eq. (73) and after slight modifica
tion, as 

#/*= pj[H9, iff xL/2][#p
2-m0

2]-1 / 2 . (88) 

If we multiply this vector operator by i we see that it 
obeys the relation 

$ x t = - i J . (89) 

This is to be contrasted with the generator of the 
inhomogeneous Lorentz group corresponding to the 
"Lorentz rotation" discussed by Foldy17 

i[r,tf,i.-*p.' (90) 

However, unlike the latter, $ does not satisfy the 
requirement 

l$tifl9"\=iPi. (91) 
17 L. Foldy, Phys. Rev. 102, 569 (1956). 
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Note added in proof. We would like to call attention to 
the work of Egil Hylleraas [Z. Physik 164,493 (1961)], 
which—in addition to the work of P. C. Martin and 
R. J. Glauber (cited in I)—also obtained earlier some 
of the results given in I. [Let us note, too, that K. A. 
Johnson's suggestion of the importance of the operator 
r is, by mistake, cited (in I) wrongly in footnote 3 
and not footnote 2 where it belonged!] 

The earliest work along these lines is contained in the 
book of G. Temple [The General Principles of Quantum 
Mechanics, (Methuen, and Company, Ltd., New York, 
1948), p. 92 ff]. We are indebted to Professor E. Guth, 
Professor S. Bludman, and Professor C. Schwartz for 
calling Temple's work to our attention, too late to be 
included in paper I, however. Unfortunately Temple's 
treatment is not wholly correct. 


